The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory
نویسندگان
چکیده
This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.
منابع مشابه
Soil and Rock Slope Stability Analysis based on Numerical Manifold Method and Graph Theory
Limit equilibrium method, strength reduction method and Finite Difference Methods are the most prevalently used methods for soil and rock slope stability analysis. However, it can be mention that those have some limitations in practical application. In the Limit equilibrium method, the constitutive model cannot be considered and many assumptions are needed between slices of soil and rock. The s...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملAN AGGREGATED FUZZY RELIABILITY INDEX FOR SLOPE STABILITY ANALYSIS
While sophisticated analytical methods like Morgenstern-Price or finite elementmethods are available for more realistic analysis of stability of slopes, assessment of the exactvalues of soil parameters is practically impossible. Uncertainty in the soil parameters arisesfrom two different sources: scatter in data and systematic error inherent in the estimate of soilproperties. Hence, stability o...
متن کاملACTIVE EARTH PRESSURE IN COHESIVE-FRICTIONAL SOILS USING FEM AND OPTIMIZATION
Calculation of lateral earth pressure on retaining walls is one of the main issues in geotechnics. The upper and lower bound theorems of plasticity are used to analyze the stability of geotechnical structures include bearing capacity of foundations, lateral earth pressure on retaining walls and factor of safety of slopes. In this paper formulation of finite element limit analysis is introduced ...
متن کاملSlope Stability Analysis Using a Self-Adaptive Genetic Algorithm
This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...
متن کامل